It may take a little while to load all charts. Please be patient. All charts require an Internet connection.
These examples are taken from the googleVis demo. You can execute the demo via
For more details about the charts and further examples see the help files of the individual googleVis function and review the Google Charts API documentation and Terms of Service.
SteppedArea <- gvisSteppedAreaChart(df, xvar="country",
yvar=c("val1", "val2"),
options=list(isStacked=TRUE))
plot(SteppedArea)
Combo <- gvisComboChart(df, xvar="country",
yvar=c("val1", "val2"),
options=list(seriesType="bars",
series='{1: {type:"line"}}'))
plot(Combo)
Scatter <- gvisScatterChart(women,
options=list(
legend="none",
lineWidth=2, pointSize=0,
title="Women", vAxis="{title:'weight (lbs)'}",
hAxis="{title:'height (in)'}",
width=300, height=300))
plot(Scatter)
Bubble <- gvisBubbleChart(Fruits, idvar="Fruit",
xvar="Sales", yvar="Expenses",
colorvar="Year", sizevar="Profit",
options=list(
hAxis='{minValue:75, maxValue:125}'))
plot(Bubble)
Dashed <- gvisLineChart(df, xvar="country", yvar=c("val1","val2"),
options=list(
series="[{color:'green', targetAxisIndex: 0,
lineWidth: 1, lineDashStyle: [2, 2, 20, 2, 20, 2]},
{color: 'blue',targetAxisIndex: 1,
lineWidth: 2, lineDashStyle: [4, 1]}]",
vAxes="[{title:'val1'}, {title:'val2'}]"
))
plot(Dashed)
M <- matrix(nrow=6,ncol=6)
M[col(M)==row(M)] <- 1:6
dat <- data.frame(X=1:6, M)
SC <- gvisScatterChart(dat,
options=list(
title="Customizing points",
legend="right",
pointSize=30,
series="{
0: { pointShape: 'circle' },
1: { pointShape: 'triangle' },
2: { pointShape: 'square' },
3: { pointShape: 'diamond' },
4: { pointShape: 'star' },
5: { pointShape: 'polygon' }
}"))
plot(SC)
Line3 <- gvisLineChart(df, xvar="country", yvar=c("val1","val2"),
options=list(
title="Hello World",
titleTextStyle="{color:'red',
fontName:'Courier',
fontSize:16}",
backgroundColor="#D3D3D3",
vAxis="{gridlines:{color:'red', count:3}}",
hAxis="{title:'Country', titleTextStyle:{color:'blue'}}",
series="[{color:'green', targetAxisIndex: 0},
{color: 'orange',targetAxisIndex:1}]",
vAxes="[{title:'val1'}, {title:'val2'}]",
legend="bottom",
curveType="function",
width=500,
height=300
))
plot(Line3)
Gauge <- gvisGauge(CityPopularity,
options=list(min=0, max=800, greenFrom=500,
greenTo=800, yellowFrom=300, yellowTo=500,
redFrom=0, redTo=300, width=400, height=300))
plot(Gauge)
Geo=gvisGeoChart(Exports, locationvar="Country",
colorvar="Profit",
options=list(projection="kavrayskiy-vii"))
plot(Geo)
Click on the column header to sort the rows
Org <- gvisOrgChart(Regions,
options=list(width=600, height=250,
size='large', allowCollapse=TRUE))
plot(Org)
Double click on a parent to collapse all its children.
Tree <- gvisTreeMap(Regions,
"Region", "Parent",
"Val", "Fac",
options=list(fontSize=16))
plot(Tree)
Left mouse-click to drill down, right mouse-click to move up a level.
Anno <- gvisAnnotationChart(Stock,
datevar="Date",
numvar="Value",
idvar="Device",
titlevar="Title",
annotationvar="Annotation",
options=list(
width=600, height=350,
fill=10, displayExactValues=TRUE,
colors="['#0000ff','#00ff00']")
)
plot(Anno)
datSK <- data.frame(From=c(rep("A",3), rep("B", 3)),
To=c(rep(c("X", "Y", "Z"),2)),
Weight=c(5,7,6,2,9,4))
Sankey <- gvisSankey(datSK, from="From", to="To", weight="Weight",
options=list(
sankey="{link: {color: { fill: '#d799ae' } },
node: { color: { fill: '#a61d4c' },
label: { color: '#871b47' } }}"))
plot(Sankey)
set.seed(123)
datHist=data.frame(A=rpois(100, 20),
B=rpois(100, 5),
C=rpois(100, 50))
Hist <- gvisHistogram(datHist, options=list(
legend="{ position: 'top', maxLines: 2 }",
colors="['#5C3292', '#1A8763', '#871B47']",
width=400, height=360))
plot(Hist)
Cal <- gvisCalendar(Cairo,
datevar="Date",
numvar="Temp",
options=list(
title="Daily temperature in Cairo",
height=320,
calendar="{yearLabel: { fontName: 'Times-Roman',
fontSize: 32, color: '#1A8763', bold: true},
cellSize: 10,
cellColor: { stroke: 'red', strokeOpacity: 0.2 },
focusedCellColor: {stroke:'red'}}")
)
plot(Cal)
datTL <- data.frame(Position=c(rep("President", 3), rep("Vice", 3)),
Name=c("Washington", "Adams", "Jefferson",
"Adams", "Jefferson", "Burr"),
start=as.Date(x=rep(c("1789-03-29", "1797-02-03",
"1801-02-03"),2)),
end=as.Date(x=rep(c("1797-02-03", "1801-02-03",
"1809-02-03"),2)))
Timeline <- gvisTimeline(data=datTL,
rowlabel="Name",
barlabel="Position",
start="start",
end="end",
options=list(timeline="{groupByRowLabel:false}",
backgroundColor='#ffd',
height=350,
colors="['#cbb69d', '#603913', '#c69c6e']"))
plot(Timeline)
daysToMilliseconds <- function(days){
days * 24 * 60 * 60 * 1000
}
dat <- data.frame(
taskID = c("Research", "Write", "Cite", "Complete", "Outline"),
taskName = c("Find sources", "Write Paper", "Create bibliography", "Hand in paper", "Outline paper"),
resource = c(NA, "write", "write", "complete", "write"),
start = c(as.Date("2015-01-01"), NA, NA, NA, NA),
end = as.Date(c("2015-01-05", "2015-01-09", "2015-01-07", "2015-01-10", "2015-01-06")),
duration = c(NA, daysToMilliseconds(c(3, 1, 1, 1))),
percentComplete = c(100, 25, 20, 0, 100),
dependencies = c(NA, "Research, Outline", "Research", "Cite, Write", "Research")
)
gntt <- gvisGantt(dat, taskID = "taskID",
taskName = "taskName",
resource = "resource",
start = "start",
end = "end",
duration = "duration",
percentComplete = "percentComplete",
dependencies = "dependencies",
options = list(height = '300',
width = 'auto'))
plot(gntt)